hierarchical data - Error in R: multi effects models -
i'm having few issue's i'd appreciate with.
head(new.data) wsz_code treatment_code year month tthm cl2_free bro3 colour ph turb seasons 1 2 3 1996 1 30.7 0.35 0.5000750 0.75 7.4 0.055 winter 2 6 1 1996 2 24.8 0.25 0.5001375 0.75 6.9 0.200 winter 3 7 4 1996 2 60.4 0.05 0.5001375 0.75 7.1 0.055 winter 4 7 4 1996 2 58.1 0.15 0.5001570 0.75 7.5 0.055 winter 5 7 4 1996 3 62.2 0.20 0.5003881 2.00 7.6 0.055 spring 6 5 2 1996 3 40.3 0.15 0.5003500 2.00 7.7 0.055 spring library(nlme) > mod3 <- lme(tthm ~ cl2_free, random= ~ 1| treatment_code/wsz_code, data=new.data, method ="ml") > mod3 linear mixed-effects model fit maximum likelihood data: new.data log-likelihood: -1401.529 fixed: tthm ~ cl2_free (intercept) cl2_free 54.45240 -40.15033 random effects: formula: ~1 | treatment_code (intercept) stddev: 0.004156934 formula: ~1 | wsz_code %in% treatment_code (intercept) residual stddev: 10.90637 13.52372 number of observations: 345 number of groups: treatment_code wsz_code %in% treatment_code 4 8 > plot(augpred(mod3)) error in plot(augpred(mod3)) : error in evaluating argument 'x' in selecting method function 'plot': error in sprintf(gettext(fmt, domain = domain), ...) : invalid type of argument[1]: 'symbol'
i'm not sure why error. ranef plot seems ok
plot(ranef(mod3))
but gives value of random intercepts, no tthm predictions. i'm looking way plot predictions in typical augpred show random effects each zone. hope makes sense.
you need groupeddata object use augpred. hope helps.
best wishes @csjcampbell
con <- textconnection(" wsz_code treatment_code year month tthm cl2_free bro3 colour ph turb seasons 2 3 1996 1 30.7 0.35 0.5000750 0.75 7.4 0.055 winter 6 1 1996 2 24.8 0.25 0.5001375 0.75 6.9 0.200 winter 7 4 1996 2 60.4 0.05 0.5001375 0.75 7.1 0.055 winter 7 4 1996 2 58.1 0.15 0.5001570 0.75 7.5 0.055 winter 7 4 1996 3 62.2 0.20 0.5003881 2.00 7.6 0.055 spring 5 2 1996 3 40.3 0.15 0.5003500 2.00 7.7 0.055 spring ") new.data <- read.table(con, header = true) library(nlme) new.data.grp <- groupeddata(tthm ~ cl2_free | treatment_code/wsz_code, data = new.data) mod3 <- lme(tthm ~ cl2_free, random= ~ 1| treatment_code/wsz_code, data=new.data.grp, method ="ml") mod3 ap3 <- augpred(mod3) plot(ap3)
Comments
Post a Comment