How to identify the records that belong to a certain time interval when I know the start and end records of that interval? (R) -


so, here problem. have dataset of locations of radiotagged hummingbirds i’ve been following part of thesis. might imagine, fly fast there intervals when lost track of until found them again. trying identify segments bird followed continuously (i.e., intervals between “lost” periods).

    id  type        timestart   timeend     limiter starter ender     1   observed    6:45:00     6:45:00     no      start   end      2   lost        6:45:00     5:31:00     yes     no      no       3   observed    5:31:00     5:31:00     no      start   no       4   observed    9:48:00     9:48:00     no      no      no       5   observed    10:02:00    10:02:00    no      no      no       6   observed    10:18:00    10:18:00    no      no      no       7   observed    11:00:00    11:00:00    no      no      no       8   observed    13:15:00    13:15:00    no      no      no       9   observed    13:34:00    13:34:00    no      no      no       10  observed    13:43:00    13:43:00    no      no      no       11  observed    13:52:00    13:52:00    no      no      no       12  observed    14:25:00    14:25:00    no      no      no       13  observed    14:46:00    14:46:00    no      no      end      14  lost        14:46:00    10:47:00    yes     no      no       15  observed    10:47:00    10:47:00    no      start   no       16  observed    10:57:00    11:00:00    no      no      no       17  observed    11:10:00    11:10:00    no      no      no       18  observed    11:19:00    11:27:55    no      no      no       19  observed    11:28:05    11:32:00    no      no      no       20  observed    11:45:00    12:09:00    no      no      no       21  observed    11:51:00    11:51:00    no      no      no       22  observed    12:11:00    12:11:00    no      no      no       23  observed    13:15:00    13:15:00    no      no      end      24  lost        13:15:00    7:53:00     yes     no      no       25  observed    7:53:00     7:53:00     no      start   no       26  observed    8:48:00     8:48:00     no      no      no       27  observed    9:25:00     9:25:00     no      no      no       28  observed    9:26:00     9:26:00     no      no      no       29  observed    9:32:00     9:33:25     no      no      no       30  observed    9:33:35     9:33:35     no      no      no       31  observed    9:42:00     9:42:00     no      no      no       32  observed    9:44:00     9:44:00     no      no      no       33  observed    9:48:00     9:48:00     no      no      no       34  observed    9:48:30     9:48:30     no      no      no       35  observed    9:51:00     9:51:00     no      no      no       36  observed    9:54:00         9:54:00     no      no      no       37  observed    9:55:00         9:55:00     no      no      no       38  observed    9:57:00     10:01:00    no      no      no       39  observed    10:02:00    10:02:00    no      no      no       40  observed    10:04:00    10:04:00    no      no      no       41  observed    10:06:00    10:06:00    no      no      no       42  observed    10:20:00    10:33:00    no      no      no       43  observed    10:34:00    10:34:00    no      no      no       44  observed    10:39:00    10:39:00    no      no      end  

note: when there “start” , “end” in same row it’s because non-lost period consists of record.

i able identify records start or end these “non-lost” periods (under columns “starter” , “ender”), want able identify periods giving them unique identifiers (period a,b,c or 1,2,3, etc). ideally, name of identifier name of start point period (i.e., id[ starter==”start”])

i'm looking this:

    id  type        timestart   timeend     limiter starter ender   period      1   observed    6:45:00     6:45:00     no      start   end     1     2   lost        6:45:00     5:31:00     yes     no      no      lost         3   observed    5:31:00     5:31:00     no      start   no      3     4   observed    9:48:00     9:48:00     no      no      no      3     5   observed    10:02:00    10:02:00    no      no      no      3     6   observed    10:18:00    10:18:00    no      no      no      3     7   observed    11:00:00    11:00:00    no      no      no      3     8   observed    13:15:00    13:15:00    no      no      no      3     9   observed    13:34:00    13:34:00    no      no      no      3     10  observed    13:43:00    13:43:00    no      no      no      3     11  observed    13:52:00    13:52:00    no      no      no      3     12  observed    14:25:00    14:25:00    no      no      no      3     13  observed    14:46:00    14:46:00    no      no      end     3     14  lost        14:46:00    10:47:00    yes     no      no      lost         15  observed    10:47:00    10:47:00    no      start   no      15     16  observed    10:57:00    11:00:00    no      no      no      15     17  observed    11:10:00    11:10:00    no      no      no      15     18  observed    11:19:00    11:27:55    no      no      no      15     19  observed    11:28:05    11:32:00    no      no      no      15     20  observed    11:45:00    12:09:00    no      no      no      15     21  observed    11:51:00    11:51:00    no      no      no      15     22  observed    12:11:00    12:11:00    no      no      no      15     23  observed    13:15:00    13:15:00    no      no      end     15     24  lost        13:15:00    7:53:00     yes     no      no      lost     

would hard in r?

thanks!

> d <- data.frame(limiter = rep("no", 44), starter = rep("no", 44), ender = rep("no", 44), stringsasfactors = false) > d$starter[c(1, 3, 15, 25)] <- "start" > d$ender[c(1, 13, 23, 44)] <- "end" > d$limiter[c(2, 14, 24)] <- "yes" > d$period <- ifelse(d$limiter == "yes", "lost", which(d$starter == "start")[cumsum(d$starter == "start")]) > d        limiter starter ender period 1       no   start   end      1 2      yes      no    no   lost 3       no   start    no      3 4       no      no    no      3 5       no      no    no      3 6       no      no    no      3 7       no      no    no      3 8       no      no    no      3 9       no      no    no      3 10      no      no    no      3 11      no      no    no      3 12      no      no    no      3 13      no      no   end      3 14     yes      no    no   lost 15      no   start    no     15 16      no      no    no     15 17      no      no    no     15 18      no      no    no     15 19      no      no    no     15 20      no      no    no     15 21      no      no    no     15 22      no      no    no     15 23      no      no   end     15 24     yes      no    no   lost 25      no   start    no     25 26      no      no    no     25 27      no      no    no     25 28      no      no    no     25 29      no      no    no     25 30      no      no    no     25 31      no      no    no     25 32      no      no    no     25 33      no      no    no     25 34      no      no    no     25 35      no      no    no     25 36      no      no    no     25 37      no      no    no     25 38      no      no    no     25 39      no      no    no     25 40      no      no    no     25 41      no      no    no     25 42      no      no    no     25 43      no      no    no     25 44      no      no   end     25 

Comments

Popular posts from this blog

linux - Does gcc have any options to add version info in ELF binary file? -

javascript - Clean way to programmatically use CSS transitions from JS? -

android - send complex objects as post php java -